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Abstract
Clash is a compiler from Haskell to hardware description.
We explore a Haskell-first approach to hardware design by
building an FPGA Sudoku solver based on a well-known
software implementation, showing the step-by-step process
of adapting it to hardware. The final code still exhibits the
benefits of Haskell’s powerful tools for abstraction.

CCS Concepts: • Hardware → Hardware descrip-
tion languages and compilation; • Software and its
engineering → Functional languages.
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1 Introduction
Digital electronic circuits can be used to build generic
computational devices that are then capable of running
programs. To solve some problem with such a device,
we take some pre-existing hardware, and write software
that uses the computational resources of that hardware.
The hardware is designed without any reference to the
particular problem we’re solving.

Alternatively, we can start from scratch, and design and
implement an application-specific circuit for our problem.
This way, we can fit the hardware design to the problem,
achieving better performance and efficiency. However, this
is usually regarded as a costly endeavor, both in terms of
development effort and in manufacturing cost.
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Field-programmable gate arrays (FPGAs) provide a cheap
and quick-turnaround way of developing application-
specific hardware, since the components of the FPGA
can be wired together in a configurable way based on a
circuit description that is uploaded electronically. They are,
effectively, a chip fab on the desktop.

That takes care of the manufacturing cost and time, but
what about development effort? In this paper, we claim that
the abstractions afforded by functional programming are
useful tools in managing circuit complexity the same way
they have been proven useful in software development.

We demonstrate this claim by building a high-
performance solver circuit1 for a well-known combinatorial
puzzle: Sudoku. After reviewing the task ahead of us in sec-
tion 2, we start in earnest in section 3 by applying standard
techniques of pure functional programming: we design
representations of Sudoku cells and grids that facilitate an
efficient and elegant implementation of pruning.

In the second half we turn towards hardware: in sections
4 to 6 we adapt this design to the constraints of finite hard-
ware, and sections 7 and 8 round off the implementation
and discuss actual hardware deployment. We conclude with
comments towards possible improvements and the experi-
ence of using Clash in sections 9 and 10.

2 Preliminaries
2.1 Sudoku
Sudoku is a combinatorial puzzle game originally played on
a nine-by-nine grid partitioned into three-by-three boxes,
each three by three in size. Given nine distinct symbols, the
player is given a partial assignment of symbols to grid cells
(a problem), and their task is to to extend it into a complete
assignment that is consistent, i.e. the nine cells of each group
(a row, column, or three-by-three box) contain the full set of
all nine symbols.

To talk about the complexity of Sudoku, we need to gen-
eralize it by some notion of size. Since each row, column,
and box needs to have the same area for the consistency
constraint to make sense, once the box size is fixed, the full
grid size also becomes fixed.This makes the original Sudoku
the (3, 3)-Sudoku. Figure 2 shows the (3, 4) and the (2, 6)-
Sudoku structures, illustrating that while both have a grid

1The complete source code of the solver is available at https://github.com/
gergoerdi/clash-sudoku
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Figure 1. A standard 9 × 9 (3, 3)-Sudoku board with an ex-
ample problem and one of its solutions

(a) (3, 4)-Sudoku board (b) (2, 6)-Sudoku board

Figure 2. Two different structures of Sudoku boards with
size 12 × 12

size of 12×12, and each group contains 12 cells for both sizes,
the underlying constraint system is completely different.

For the rest of this paper, we will denote 𝑁 = 𝑛𝑚 as the
size of an (𝑛, 𝑚)-Sudoku where the exact shape doesn’t mat-
ter.

Under this generalization, the problem of Sudoku solving
is NP-complete [15]. It stands to reason, then, to base our
design on backtracking and a collection of heuristics.

2.2 FPGA Design Basics
An FPGA consists of a large number of uniform elements
called logic blocks, a network of signal wires between these
blocks, and switching boxes that route these signals accord-
ing to the configuration. Inside each logic block, we find a
fixed-size lookup table with a small handful of input and
output lines, connected to a register. There are also a small
number of specialized elements like RAM, clock signal gen-
erators, or complex digital signal processor blocks; these
connect to the same routing network as the regular com-
ponents.

FPGA designs are usually described at the register
transfer level (RTL), and then automated tools refine that
design into a complete configuration for a given device,
filling each lookup table and switching each router. In
the RTL model, the design is described as a network of
arbitrary-width registers, synchronized via shared clock
lines. Connections between the registers are so-called
combinational circuits: clockless, and thus stateless circuits

whose output at any given moment is a pure function of
their current input.

fun

clk

reg

x

y

Figure 3. Register transfer-level component

2.3 Clash: Haskell for Hardware
Clash [1, 6] is a Haskell compiler based on GHC [14] that
emits register-transfer level hardware descriptions instead
of executable programs. The circuits represented by these
descriptions can then be realized on an FPGA or in the form
of a bespoke integrated circuit.

Clash compiles pure Haskell functions into combina-
tional circuits, for example the following function describes
a circuit consisting of one 8-bit adder and one 8-bit AND
gate:

combine :: Unsigned 8 → Unsigned 8 → Unsigned 8

combine x y = (x + y) .&. x
By their very nature, combinational circuits are stateless
and correspond to the behaviour of RTL blocks within a sin-
gle clock cycle. We will use only these in section 3, but by
the end of the section we run into physical limitations that
necessitate using smaller circuits over several clock cycles.

To describe stateful circuits, we need the ability to insert
registers. Unlike so-called high-level synthesis languages,
Clash never changes the synchronous structure of the
circuit: registers are never inferred, only inserted explicitly
by the programmer using the register combinator.

type Signal :: Domain → Type → Type

register :: a → Signal dom a → Signal dom a

We build RTL networks by putting combinational circuits
between registers, using the applicative functor interface
[9]:

instance Applicative (Signal dom)
The Signal type constructor is tagged at the type level with
a clock domain. This ensures that the applicative combina-
tors cannot be used to accidentally cross clock domains,
which can lead to nondeterministically inconsistent circuit
behaviour. In our circuit, we will only use a single clock
domain.

Signals commute with product types via the Bundle type-
class and its bundle and unbundle methods. For example,
for 2-tuples we have:
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bundle @(a, b) ::
(Signal dom a, Signal dom b) → Signal dom (a, b)

unbundle @(a, b) ::
Signal dom (a, b) → (Signal dom a, Signal dom b)

These operations are merely structural, i.e. they correspond
to just different ways of grouping the same signal lines. As
such, they don’t yield any circuitry.

With this toolkit, the elementary RTL from Figure 3 can
be described in Clash in the following way, using the ⟨$⟩ and
⟨*⟩ combinators of the Applicative typeclass, with recur-
sion guarded by register to implement the feedback (y0 is
the initial value of the register upon reset):
y :: Signal dom (Unsigned 5)
y = register y0 (fun ⟨$⟩ x ⟨*⟩ y)
The type of the contents of the y signal is specified as
Unsigned 5. Since we are describing fully customized
circuits, we can use arbitrary sizes that would be exotic
in a software context. Clash provides types like Unsigned,
Signed, or BitVector that are indexed by type-level nat-
ural numbers [17] describing their exact width. Similarly,
the Index n type can be used to represent a natural number
between 0 and 𝑛 − 1 (known as Fin n in some dependently
typed languages) using ⌈log2 𝑛⌉ bits.

3 A Pure Solver
In this section we first adapt Bird’s well-known, pure
Haskell solver [2] to a hardware-friendly representation of
Sudoku boards and then analyze its viability as a hardware
circuit.

We start with the following basic structure of the solver:
type Sudoku n m = Grid n m (Cell n m)
expand :: Sudoku n m → [Sudoku n m] -- defined later
sudoku :: Sudoku n m → Maybe (Sudoku n m)
sudoku grid

∣ blocked = empty

∣ complete = pure grid

∣ changed = sudoku pruned

∣ otherwise =
asum [sudoku grid' ∣ grid' ← expand grid]

where
-- blocked, complete, changed, and
-- pruned defined later in this section

The only difference compared to Bird’s solver are the Grid
and Cell types, which are indexed by the size of the Sudoku
board.

3.1 Board Representation
As is usual with functional program design, well-chosen
data types can lead us to good implementation. We define
representations of cells and grids motivated by two design

criteria: efficient mapping to hardware structures, and
effortless support of the operations needed for Sudoku
solving.

Suggested by Figure 2, we should try avoiding confusion
in the geometry, and represent our (𝑛, 𝑚)-Sudoku grid as
a matrix of boxes, themselves matrices. The Clash standard
library provides sized vectors, whichwe can use as the build-
ing block of our matrix type storing a vector of rows.
newtype Mtx n m a = FromRows (Vec n (Vec m a))
deriving (Functor, Applicative, Foldable)
via Compose (Vec n) (Vec m)

deriving (Semigroup, Monoid)
via Ap (Mtx n m) a

We use the Deriving Via mechanism [4] to generate a large
number of typeclass instances with little effort; these in-
stances will be made useful by our monoid-based interface
to pruning.

We similarly define Grid as a matrix of matrices, with the
same instances:
newtype Grid n m a = Grid (Mtx n m (Mtx m n a))
deriving…

To implement pruning, each individual Cell tracks the re-
maining candidates for its value. Since we have 𝑁 = 𝑛𝑚
distinct symbols, we can represent each cell of an (𝑛, 𝑚)-
Sudoku board as an 𝑁 -bit vector, with the 𝑖th bit set to 1
if 𝑖 is still a possible value for the given cell.
newtype Cell n m = Cell {cellBits :: BitVector (n * m)}
canBe :: Cell n m → Index (n * m) → Bool

Cell c c̀anBè i = c ! i == 1

The all-ones cell represents a wildcard value which could
still be anything, and the all-zeroes cell is the result of a
conflict in the remaining constraints:
wild, conflicted :: Cell n m

wild = Cell oneBits

conflicted = Cell zeroBits

We also need a way to convert given values into our cell
format. Data.Bits.bit constructs a BitVector where the
only set bit is the one with the specified index:
given :: Index (n * m) → Cell n m

given = Cell ∘ bit ∘ fromIntegral
With the Foldable instance of Grid, we can fill in the first
missing local definition of our sudoku function. Using the
terminology from [2], the board is void if any of the cells
have no more possible candidate values:
sudoku grid = …
where

blocked = void ∨ not safe

void = any (== conflicted) grid
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3.2 Testing Consistency
A given collection of cells is consistent if the already
known values (i.e. cells which only have a single candidate
value remaining) don’t overlap. The whole board is safe if
all groups (rows, columns and boxes) are consistent:
sudoku grid = …
where
safe = allGroups consistent grid

consistent ::

(Foldable f, Functor f) ⇒ f (Cell n m) → Bool

consistent = not ∘ bitsOverlap ∘
fmap 𝜆c → if single c then cellBits c else 0

To check if a given Cell value is fully known, we can im-
plement single by counting the number of set bits in its
bit-mask using Data.Bits.popCount:
single :: Cell n m → Bool

single cell = popCount (cellBits cell) == 1

Since each cell is stored as a bit-mask, an overlap can be
detected by accumulating the bits in a given group, checking
every bit-mask against the previous ones:
bitsOverlap ::

(Foldable f) ⇒ f (BitVector n) → Bool

bitsOverlap = (/= 0) ∘ snd ∘ foldr step (0, 0)
where
step x (acc, overlaps) =
(acc .|. x, overlaps .|. (acc .&. x))

As for safe itself, unlike void, it is not a cell-by-cell pro-
prety; instead, it is tied to the constraint structure of the
Sudoku board. We need predicates that can view a whole
group at a time:
allGroups :: (Group n m a → Bool) → Grid n m a → Bool

Each Group contains 𝑁 cells, and a complete set of groups
(all rows, all columns, or all boxes) consists of 𝑁 of them:
type Group n m a = Vec (n * m) a
type Groups n m a = Vec (n * m) (Group n m a)
These make up the fundamental constraint structure of a
Sudoku puzzle, so we need a convenient way of accessing
them. As a first stab, we can try using normal functions to
represent possible groupings. We will return to this choice
of representation in subsection 3.4, but it will do for now:
type Grouping n m = ∀ a. Grid n m a → Groups n m a

cols, rows, boxs :: Grouping n m -- Defined later
This gives us a very simple implementation of allGroups
as a conjunction over all groupings:
allGroups :: (Group n m a → Bool) → Grid n m a → Bool

allGroups p grid =
allBy rows ∧ allBy cols ∧ allBy boxs

where
allBy grouping = all p (grouping grid)

3.3 Pruning
Pruning is the only heuristic we are implementing, and it is
the fundamental operation of our solver. If we know that a
given cell’s value can only be e.g. 4, it follows that no other
cell in the same row, column, or box can be 4, and so we can
remove 4 as a possible value from all these neighbouring
cells.

To implement this, the plan is to convert known cell val-
ues (i.e. those that have only a single possible value left)
into masks on possible values, then combine the masks in
a given group, and disallow the combined values from not-
yet-known cell values:

sudoku = …
where

pruned = apply ⟨$⟩ groupMasks ⟨*⟩ grid
changed = pruned /= grid

groupMasks = foldGroups (maskOf ⟨$⟩ grid)
maskOf cell = cellMask (single cell) cell
apply mask cell = act mask (single cell) cell

This means that masks start life with the bit-mask corre-
sponding to single values of cells (cellMask), are then com-
bined via bitwise inclusive-or exposed as a monoidal oper-
ation, and then act on cells via bitwise-and-not, both of
which are very efficient to do in hardware.

newtype Mask n m = Mask {maskBits :: BitVector (n * m)}
instance Semigroup (BitMask n m) where

Mask m1 ♢ Mask m2 = Mask (m1 .|. m2)
instance Monoid (BitMask n m) where

mempty = Mask zeroBits

cellMask :: Bool → Cell n m → Mask n m

cellMask isSingle (Cell c) =
if isSingle then Mask c else mempty

act :: Mask n m → Bool → Cell n m → Cell n m

act (Mask m) isSingle (Cell c)
∣ isSingle = Cell c

∣ otherwise = Cell (c .&. complement m)
We pass isSingle as a parameter to cellMask and act in-
stead of computing it on our own from the Cell argument
because we will later want to avoid computing it repeatedly
for the same cell.

To illustrate how all this machinery works, suppose we’re
solving a (2, 3)-Sudoku and come across a row where four
of the cells are already known and one cell only has three
possible values:
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cells = 1 2 1 2 3
4 5 6 3 2

4 5 4

masks = 1 2 3
4

fold 1 2 3
4

cells' = 1 2 5 6 3 5 4

Thus, cells' contains the result of propagating the con-
straints, restricting possible values on the third cell, and
solving the fifth one completely. A further propagation step
is needed to remove 5 from the third cell’s candidates, thus
solving it to 6.

Note that act is a monoidal action: it commutes with ♢,
i.e. act m1 ∘ act m2 ≡ act (m1 ♢ m2). Consequently, we can
combine masks from all neighbours of a given cell using
bitwise disjunction and apply it just once.

3.4 Mapping and Folding by Rows, Columns, and
Boxes

To combine the masks of each group per group, we need to
implement foldGroups which replaces every cell with the
monoidal sum of the three groups it belongs to. For a grid
of Masks, it corresponds exactly to the propagation we need
in our sudoku function.
foldGroups :: (Monoid a) ⇒ Grid n m a → Grid n m a

However, we need to revisit our definition of Grouping. If a
Grouping is just a function from grid to groups, this would
only allow us to extract the groups instead ofmapping them
in-place. Let’s say we extract the rows, columns, and boxes
of a grid, and calculate some rowwise, columnwise and box-
wise results. We then have no way of lining up these three
results to do some further processing at each cell as an in-
tersection of its three groups.

Instead, we will represent each Grouping as a bidirec-
tional mapping of the Grid to its Groups:
type Grouping n m = ∀ a. Grid n m a↔ Groups n m a

These bidirectional mappings are pairs of functions in both
directions forming an isomorphism:
data a↔ b = Iso {embed :: a → b, project :: b → a}
instance Category (↔) where…
Isomorphisms lift through functors:
imap :: (Functor f) ⇒ a↔ b → f a↔ f b

imap iso = Iso (fmap (embed iso)) (fmap (project iso))
We use this infrastructure to define the following trivial
building blocks:
iconcat :: Vec n (Vec m a) ↔ Vec (n * m) a
itranspose :: Vec n (Vec m a) ↔ Vec m (Vec n a)
matrix :: Mtx n m a ↔ Vec n (Vec m a)
transposeGrid :: Grid n m a ↔ Grid m n a

grid :: Grid n m a ↔ Mtx n m (Mtx m n a)

We now have everything to define our groupings as bidirec-
tional mappings, composed with the Category typeclass’s
∘ operator. The simplest is boxs because Grid’s inner matri-
ces already directly correspond to the boxes, we just need
to enumerate them in row-major order:

rowMajorOrder :: Mtx n m a↔ Vec (n * m) a
rowMajorOrder = iconcat ∘ matrix
boxs :: Grouping n m

boxs = rowMajorOrder ∘ imap rowMajorOrder ∘ grid
rows is a bit trickier, because we have to reshape across the
outer matrix’s structure. Thankfully, since the dimensions
are tracked in the types, we can use e.g. GHC’s typed holes
feature while writing to arrive at the correct definition:

rows :: Grouping n m

rows =
imap iconcat ∘ iconcat ∘ imap itranspose ∘
matrix ∘ imap matrix ∘ grid

And finally for cols we can take a shortcut via rows using
transposition:

cols :: Grouping n m

cols = rows ∘ transposeGrid
The change to allGroups to use this new representation is
minimal: we just need to use embed in allBy to retrieve the
forward-mapping component of the given grouping.

allGroups :: (Group n m a → Bool) → Grid n m a → Bool

allGroups p grid =
allBy rows ∧ allBy cols ∧ allBy boxs

where
allBy grouping = all p (embed grouping grid)

We can also implement a row-major order Traversable in-
stance [3] for Grid using rows:

instance Traversable (Grid n m) where
traverse f =

fmap (project rows) ∘ traverse (traverse f) ∘
embed rows

The implementation of foldGroups is similar to allGroups.
The crucial difference is that the groupwise results are
mapped back by foldBy into the full Grid before combining
them cell by cell into the final result:

foldGroups :: (Monoid a) ⇒ Grid n m a → Grid n m a

foldGroups = foldBy rows ♢ foldBy cols ♢ foldBy boxs

where
foldBy grouping =
project grouping ∘
fmap (repeat ∘ fold) ∘
embed grouping
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Figure 4 shows an example of how foldGroups on a (2, 3)
grid implements constraint propagation. All-zero masks are
shown as empty cells.

We take a moment here to make note of the fact that all
the constituent parts of our groupings, and thus the group-
ings themselves, are merely shuffling around the elements
between various vector-represented containers. Thus, in a
hardware implementation, a function like embed rows ap-
plied on a Mtx n m (Signal dom a) is “free of charge” in
the same sense as bundle and unbundle, i.e. it is purely a
relabeling of signals, without any further combinational cir-
cuitry, and thus without any use of logic blocks.

3.5 Generating Guesses
The job of the expand function is to generate guesses for
cells whose value we don’t yet know for sure.There are mul-
tiple heuristics we could employ here, but instead we’re go-
ing to simply pick the last cell that offers multiple remaining
choices.

We can achieve this by traversing our grid using
mapAccumR, where the state records whether we have
already encountered a cell that can be split into differ-
ent choices. We can then use sequenceA to expand our
grid-of-list-of-possible-cells into a list-of-possible-grids:

expand :: Sudoku n m → [Sudoku n m]
expand grid = sequenceA ∘ snd ∘ mapAccumR guess False

where
guess done cell

∣ not done, cs@(_∶ _) ← choices cell = (True, cs)
∣ otherwise = (done, [cell])

To generate all possible choices for a single cell, we can
check all possible Index (n * m) values to see if they are still
possible assignments for the given cell, and then generate
unique given choices for them:

choices cell =
[given i ∣ i ← [minBound . . maxBound], cell c̀anBè i]

With this definition, we have finished our implementation
of the software solver.

3.6 Why the Rest of This Paper?
Recall the type of sudoku:

sudoku :: Sudoku n m → Maybe (Sudoku n m)
If Clash compiles Haskell code to hardware circuit descrip-
tions, can’t we just take this function, slap some IO around
it, and be on our way? The remaining word count of this
paper spoils that the answer is no, but let’s examine in de-
tail why. There are two kinds of problems with our current
software solver from a hardware perspective:

Unboundedness. A hardware circuit is made of physical
components wired together, and so it has a fixed, finite size.
The software implementation we have presented has two
parts that are unbounded: the list returned by expand, and
the implicit stack of the recursion in sudoku.

Luckily, both of these can be made finite using upper
bounds. Since expand only guesses one cell at a time, and
each cell can only have at most 𝑁 candidate values, the list
returned by choices, and consequently expand, can be at
most 𝑁 long. Similarly, since each expand result contains
one more single cell, the stack depth never needs to grow
beyond the number of cells, i.e. 𝑁 2.

Efficiency. It shouldn’t surprise us that we can, at least in
principle, design a finite-sized circuit to solve fixed-sized in-
stantiations of a problem inNP. However, the size of the cir-
cuit we get from the naïve application of the above bounds
is far beyond what is feasible on real hardware.

Remembering that each cell is an 𝑁 wide bit-mask, and
each board configuration has 𝑁 2 cells, the 𝑁 -ary, 𝑁 2 deep
tree of boards contains𝑁 ×𝑁 2×𝑁𝑁 2

bits. Before even imple-
menting any of the logic that creates this tree, even for the
common (3, 3)-Sudoku this is more than 1080 signal lines.
This also would make pruning worthless, since its only ef-
fect is dynamically choosing not to use some parts of this
enormous circuit.

Our hardware solution solves these problems by decreasing
the branching factor from𝑁 to just 2 (a first guess and a con-
tinuation), and then using temporal multiplexing (“trading
time for space”) to apply the same small circuit to explore
different points of the state space, limiting breadth (number
of parts) and depth (longest signal path) by breaking down
our function into a sequence of steps over multiple clock
cycles:

1. Prune by propagating all constraints coming from
single-valued cells. If this results in all cells having
a single value, we have found a solution and we’re
done.

2. If any of the cells have no more possible values left,
or the single-valued cells of a group overlap, we have
reached a contradiction. Pop from the stack, replacing
the current grid, and start again.
If the stack underflows, it means we have run out of
possible guesses without finding a solution, and so the
original problem has no solutions and we’re done.

3. Otherwise, make a guess by splitting one cell into a
single value and all other of its currently allowed val-
ues.This results in two grids, both of which only differ
from the original grid (and each other) in that one cell.
Replace the current grid with the first one, and push
the second one onto an external stack. Since we know
𝑁 2 is an upper bound on the required stack depth, this
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Figure 4. Example of foldGroups on the Masks of a (2, 3)-Sudoku

operation can never overflow if we use a stack at least
𝑁 2 deep.

4 Two-Way Branching
We first tackle the seemingly unbounded result size of
choices. We can split a cell of possible values into two
guesses: a cell with a single bit set, and a cell containing
all other remaining possibilities. It doesn’t matter which
single set bit we return as the first guess, but we have
a very hardware-efficient way of computing the least
significant set bit [13, 16], thanks to the two’s-complement
Num semantics of BitVector:
leastSetBit :: BitVector n → BitVector n

leastSetBit x = x .&. negate x

Now we can also compute the rest of the available cell
choices by masking out the least set bit:
splitCell :: Cell n m → (Cell n m, Cell n m)
splitCell (Cell c) = (Cell least, Cell rest)
where
least = leastSetBit c

rest = c .&. complement least

We can use splitCell to write a version of expand that
returns a pair of grids instead of a whole list of them, but
it can also be used as an implementation of single, since
removing the only possibility results in a conflicted cell:

single :: Cell n m → Bool

single = (== conflicted) ∘ snd ∘ splitCell

This can be implemented efficiently in hardware because un-
derneath all the newtype wrappers, it’s just comparing an
𝑁 -bit value with all zeroes. However, it is perhaps less ob-
vious why going via splitCell is not wasteful, compared
to a more direct implementation.

In software, we are used to the idea of efficiency arising
from avoiding unncesessary computations, so we might
think that we only want to compute splitCell for the
one cell that expand selects as the first expandable one.
But in combinational circuits, branching corresponds to
a multiplexer selecting the output of one of the possible
sub-circuits (see Figure 5), so in terms of footprint, number
of parts, circuit complexity, or any similar metric, we don’t
win anything by pushing computations under branches.
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x

fun1

fun2

test

Figure 5. Combinational circuit of 𝜆x →
if test x then fun1 x else fun2 x

Concretely, if we implement the new version of guess
like the following, in hardware there are no wasted parts
just from computing nextGuess even for non-single cells.

expand ::

Sudoku n m → (Grid n m Bool, Sudoku n m, Sudoku n m)
expand = funzip3 ∘ snd ∘ mapAccumR guess False

where
funzip3 xyzs =
((𝜆(x, _, _) → x) ⟨$⟩ xyzs
, (𝜆(_, y, _) → y) ⟨$⟩ xyzs
, (𝜆(_, _, z) → z) ⟨$⟩ xyzs)

guess done cell

∣ not done ∧ not single =
(True, (single, firstGuess, nextGuess))

∣ otherwise =
(done, (single, cell, cell))

where
(firstGuess, nextGuess) = splitCell cell

single = nextGuess == conflicted

In fact, since calculating and applying masks during
pruning also heavily depends on single, we can save parts
elsewhere in sudoku by reusing the single information
returned by expand:

sudoku grid ∣ …
∣ otherwise = sudoku guess ⟨∣⟩ sudoku cont

where
(singles, guess, cont) = expand grid

pruned = act ⟨$⟩ groupMasks ⟨*⟩ singles ⟨*⟩ grid
groupMasks =
foldGroups (cellMask ⟨$⟩ singles ⟨*⟩ grid)

5 Opening Up the Recursion
We have seen that a purely combinational Sudoku solver cir-
cuit would be enormous. The root of the problem is that if
we have a single static circuit, it will necessarily contain as
many copies of the circuit implementing the main iteration
as there are points in our state space. What we want instead

is to use one circuit on the initial Sudoku board’s represen-
tation in one cycle, then reuse that same circuit in the next
cycle on the result of the previous cycle (Figure 6).

sudoku sudoku sudoku …

…

(a) Many copies of the sudoku circuit

sudoku

input
clk

result

ready

(b) One copy of sudoku with feedback

Figure 6. Using one copy of sudoku over multiple clock cy-
cles

To achieve that, we will have to go beyond pure functions
and start truly using the RTL model. As a first step down
that road, let’s open up sudoku’s recursion by factoring out
a solve function that does one round of solving:
data Step n m = Blocked

∣ Complete
∣ Progress (Sudoku n m)
∣ Stuck (Sudoku n m) (Sudoku n m)

solve :: Sudoku n m → Step n m

solve grid ∣ blocked = Blocked

∣ complete = Complete

∣ changed = Progress pruned

∣ otherwise = Stuck guess cont

where
-- All other local definitions the same as before

By circumscribing solve this way, we are making the
decision on howmuch our eventual circuit will do per clock
cycle. In particular, since solve includes a definition of
pruned, it means our circuit will propagate all immediate
constraints in a single clock cycle.

To recover our pure solver, we can pair up solve with a
simple driver that turns Stuck into a branch in Maybe:
sudoku :: Sudoku n m → Maybe (Sudoku n m)
sudoku grid = case solve grid of
Blocked → empty

Complete → pure grid

Progress pruned → sudoku pruned

Stuck guess cont → sudoku guess ⟨∣⟩ sudoku cont
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However, we get something much more enlightening if we
make the use of a stack explicit. Note that we have recur-
sive occurrences of sudoku both in a tail call position (in
the Progress branch) and in a non-tail call position (in the
Stuck branch). Tail calls correspond to a step that replaces
the current grid before the next step. We can see this more
clearly if we switch to continuation-passing style for the fail-
ure continuation [7]:
type Cont n m = Maybe (Sudoku n m)
sudoku :: Sudoku n m → Maybe (Sudoku n m)
sudoku grid = go grid empty

where
go :: Sudoku n m → Cont n m → Maybe (Sudoku n m)
go grid k = case solve grid of

Blocked → k

Complete → pure grid

Progress pruned → go pruned k

Stuck guess cont → go guess $ go cont k

We can see that k accumulates a growing list of cont grids in
its thunk, which are then consumed in the Blocked branch.
We defunctionalize this by using an explicit stack [18]. Our
state thus becomes a pair of the current grid and the stack.
For this softwaremodel, we can use a simple list for the stack
representation:
type Stack n m = [Sudoku n m]
type Cont n m = Stack n m

sudoku :: Sudoku n m → Maybe (Sudoku n m)
sudoku grid = go grid [ ]
where
go :: Sudoku n m → Cont n m → Maybe (Sudoku n m)
go grid st = case solve grid of

Blocked

∣ (grid' ∶ st') ← st → go grid' st'

∣ otherwise → empty

Complete → pure grid

Progress pruned → go pruned st

Stuck guess cont → go guess (cont ∶ st)
As the final transformation, we make the state transitions
explicit, by splitting off the function that calculates a single
step:
data Transition k r = Continue k ∣ Done r

data Result = Solved ∣ Unsolvable
sudoku :: Sudoku n m → Maybe (Sudoku n m)
sudoku grid = go grid [ ]
where
go :: Sudoku n m → Cont n m → Maybe (Sudoku n m)
go grid st = case step grid st of
Done Solved → pure grid

Done Unsolvable → empty

Continue (grid', st') → go grid' st'

step ::

Sudoku n m → Stack n m →
Transition (Sudoku n m, Stack n m) Result

step grid st = case solve grid of
Blocked

∣ (grid' ∶ st') ← st → Continue (grid', st')
∣ otherwise → Done Unsolvable

Complete → Done Solved

Progress pruned → Continue (pruned, st)
Stuck guess cont → Continue (guess, cont ∶ st)

Let’s spell out explicitly what we have done so far. Starting
with a pure, recursive function, we have split it into two
parts: the first one, solve, is non-recursive, implements the
bulk of the desired functionality, and is reasonably sized for
synthesis. The second one, sudoku, drives the first one by
way of an explicit stack.We are not going to compile this sec-
ond function as-is into hardware; instead, its role is to keep
our specification fully executable, and to guide us when de-
veloping the actual controller circuit.

Wewill keep solve as it is for the rest of this paper. All the
nice high-level constructs in it, such as using foldGroups
to propagate our monoidal action-represented constraints
across the isomorphisms of rows, columns and boxes, are
directly turned into hardware by Clash.

6 Backtracking With a Hardware Stack
For the hardware version, we implement the stack as a piece
of RAM combined with a register holding the stack pointer.
FPGAs contain blocks of on-chip RAM, which can be used
with synchronous single-cycle access.This means that in ev-
ery clock cycle, the read value output corresponds to the
address input that was supplied in the previous clock cycle.

6.1 RAM
First of all, we need a convenient way of accessing RAM.
Clash provides an interface to block RAM in the form of
the blockRamU function (the U stands for “uninitialized at
power-up”):

blockRamU :: (Enum addr) ⇒
SNat n → -- Number of elements
Signal dom a → -- Read address
Signal dom (Maybe (a, d)) → -- Write addr. and data
Signal dom a

We adapt this interface to our needs in two ways.
The first thing to notice is that blockRamU consumes an

address signal and returns a read data signal that both al-
ways contain some value2. For our stack implementation,
we want to think of reading frommemory as an “action”, i.e.

2The read value is ⊥ when reading from a not-yet written-to address
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something that happens only in select circumstances: when
we want to pop from the stack. This is better modelled if
both the address input and the read data output are Maybe
values.

Moreover, for our stack, in any given single cycle, we
are either reading or writing, so at most one of the two ad-
dresses will be set. We represent this restriction with a cus-
tom data type for memory commands:

data MemCmd n d = Write (Index n) d ∣ Read (Index n)
ram ::

Signal dom (Maybe (MemCmd n d)) → Signal dom (Maybe d)
ram cmd = enableDelayed (isJust ⟨$⟩ rdAddr) rd
where
(rdAddr, wr) = unbundle (memLines ⟨$⟩ cmd)
rd = blockRamU (SNat @n) (fromMaybe ⊥ ⟨$⟩ rdAddr) wr

In the implementation of ram, we can convert from a mem-
ory command into the input lines of blockRamU:

memLines :: Maybe (MemCmd n d) →
(Maybe (Index n), Maybe (Index n, d))

memLines Nothing = (Nothing, Nothing)
memLines (Just (Read addr)) = (Just addr, Nothing)
memLines (Just (Write addr x)) = (Nothing, Just (addr, x))
The Maybe gating of the read output is implemented with
enable:

enable :: (Applicative f) ⇒ f Bool → f a → f (Maybe a)
enable = liftA2 𝜆en x → if en then Just x else Nothing

Because of the one-cycle read delay of synchronous RAM, a
Just value in the read output corresponds to a Just value
in the address line in the previous cycle. We use an extra
register to delay the enable signal by one cycle:

enableDelayed ::

Signal dom Bool → Signal dom a → Signal dom (Maybe a)
enableDelayed en = enable (register False en)
Note that since blockRamU is a primitive corresponding to
some actual stateful circuitry, this is our first true Signal
function. As we round out our hardware solver implemen-
tation, we will use Signal’s Applicative instance to com-
pose ram and similar signal functions with lifted pure func-
tions and each other.

For our Sudoku solver specifically, we know that we
need a stack of depth 𝑁 2 to support any possible back-
tracking. For memory word size, Clash allows us to just
use Sudoku n m as the type of the memory contents, and
automatically calculate that it needs a width of 𝑁 4 bit.

type StackDepth n m = n * m * m * n

type StackPtr n m = Index (StackDepth n m)
type StackCmd n m = MemCmd (StackDepth n m) (Sudoku n m)

6.2 step With External Stack Access
We write a function that “turns the crank” of solve, i.e.
that implements a single iteration of our previous pure
step function by externalizing its stack access. Given a
current grid and stack pointer, it produces not only the
new grid and stack pointer (if we are not done yet), but also
a memory command to be sent to the stack. Conversely,
when the stack outputs a value, this popped grid is picked
up to replace the current grid.

step ::

Maybe (Sudoku n m) → Sudoku n m → StackPtr n m →
Transition

(Sudoku n m, StackPtr n m, Maybe (StackCmd n m))
Result

step stackRd grid sp = case solve grid of
_ ∣ Just popped ← stackRd →
Continue (popped, sp, Nothing)

Complete → Done Solved

Blocked

∣ sp == 0 → Done Unsolvable

∣ otherwise →
Continue (grid, sp - 1, Just (Read (sp - 1)))

Progress pruned → Continue (pruned, sp, Nothing)
Stuck guess cont →

Continue (guess, sp + 1, Just (Write sp cont))
Compared to the software model step in section 5, the big
difference here is that when we are Blocked, we don’t have
immediate access to the top of the stack. Instead, we emit
a Read command to RAM and consume the memory output
in the next cycle.

6.3 Cell-by-Cell Loading and Retrieval
Wewant to wire up step to read from and write to the stack,
but there is one problem: we could store the current grid and
the current stack pointer in registers and update them from
one cycle to the next on Continue transitions, but how do
we load in the initial problem description?

The Traversable instance of Grid is defined via rows, i.e.
in row-major order, to provide an easy way of implement-
ing cell-by-cell writing and reading of Grids in the natu-
ral textual (left-to-right, top-to-bottom) ordering. Without
it, we would need to collect all 𝑁 2 elements in some tem-
porary storage before we can turn them wholesale into a
complete new Grid n m. By implementing a shift-in opera-
tion from the bottom right, we can start with any Grid n m
(e.g. pure wild), and gradually load 𝑁 2 elements into it to
replace its contents incrementally:

shiftIn :: a → Grid n m a → Grid n m a

shiftIn new =
snd ∘ mapAccumR (𝜆new old → (old, new)) new
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We implement a simple streaming interface using shiftIn
to fill the Sudoku n m grid cell by cell. During this load-
ing process cells that are in different groups in the final grid
can temporary become neighbours; we avoid corrupting the
grid before it even finishes loading by adding an extra pa-
rameter that enables the normal pruning step. This param-
eter is set to True by the controller only after all 𝑁 2 cells
have been loaded in.

loadStep ::

Maybe (Cell n m) → Bool →
Maybe (Sudoku n m) → Sudoku n m → StackPtr n m →
Transition

(Sudoku n m, StackPtr n m, Maybe (StackCmd n m))
Result

loadStep cellIn enable stackRd grid sp

∣ Just newCell ← cellIn =
Continue (shiftIn newCell grid, 0, Nothing)

∣ not enable = Continue (grid, sp, Nothing)
∣ otherwise = step stackRd grid sp

By resetting the stack pointer when shifting in cells we en-
sure that we always start solving with an empty stack, with-
out needing an extra explicit reset state between problems.

For output, we can tap into the topmost-leftmost cell and
repeatedly shift in some dummy element when this output
is consumed to get out the elements in the natural textual
ordering. The type of the head function on sized vectors en-
sures that this is valid only on non-zero-sized grids.

type Nonempty n m = 1 ≤ n * m * m * n

headGrid :: (Nonempty n m) ⇒ Grid n m a → a

headGrid = head ∘ embed (iconcat ∘ rows)

6.4 Putting It Together
The complete solver takes in an input stream of cells and
produces a signal containing the result once it becomes
available. It also exposes the grid’s first cell, which can
be used to implement streaming output after the result
becomes Just Solved.

solver ::

(NonEmpty n m) ⇒
Signal dom (Maybe (Cell n m)) → Signal dom Bool →
(Signal dom (Cell n m), Signal dom (Maybe Result))

Internally, we create two registers for the current grid and
the stack pointer. These are updated from the transition re-
turned by loadStep. The stack is also driven from this tran-
sition.The update function returns a large tuple, but we can
use a pattern matching bind with unbundle to take it apart
into separate named signals.

solver cellIn enable = (headGrid ⟨$⟩ grid, result)
where

grid = register (pure wild) grid'
sp = register 0 sp'

stackRd = ram stackCmd

(grid', sp', stackCmd, result) = unbundle $

update ⟨$⟩ cellIn ⟨*⟩ enable
⟨*⟩ stackRd ⟨*⟩ grid ⟨*⟩ sp

update cellIn enable stackRd grid sp =
case loadStep cellIn enable stackRd grid sp of

Continue (grid', sp', stackCmd) →
(grid', sp', stackCmd, Nothing)

Done result →
(grid, sp, Nothing, Just result)

7 The Boring Bits
As functional programmers, if we were writing a Sudoku
solver program, we would implicitly understand that the
end result should be something we can run on some op-
erating system on top of some general-purpose computer.
The operating system would provide some ways of com-
municating with the user, and we could, for example, de-
cide to make use of pipe-based IO to read in a problem de-
scription from standard input and write out a representa-
tion of a solution to standard output. We could implement
this design by composing our pure sudoku function with
a parser and a pretty-printer, and then wrapping it with
interact :: (String → String) → IO ().

For our circuit, we have to make analogous design
decisions in the hardware space. We use a universal
asynchronous receiver-transmitter (UART) to deserialize
an input stream of ASCII characters describing a Sudoku
problem, and then return the result in a similar serialized
ASCII stream. With just two wires, some careful timing,
and using the right physical signal levels, this allows us to
interface with mid-20th century teletype terminals as well
as contemporary desktop computers.

By simply ignoring invalid characters, we can support
many different input formats with various spacing elements
or even ASCII art between boxes. The left-hand side input
in Figure 7 shows one example of such a format.

We implement a simple state machine (using the State
monad) to load Sudoku problems from the user one given
or wild cell at a time, as they become available; after 𝑁 2
cells are loaded in, the solver is enabled; finally the solu-
tion is sent out (or a single conflicted cell if the problem is
unsolvable). The high-level structure of the complete circuit
is shown in Figure 8.
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. 2 . | 9 . 8 | . . .

8 7 . | . . 1 | . 5 4

5 . 6 | 4 . . | . 1 .

------+-------+------

. . 2 | . . . | . 9 5

. . . | . . . | . . .

9 4 . | . . . | 8 . .

------+-------+------

. 8 . | . . 4 | 5 . 3

1 3 . | 2 . . | . 8 6

. . . | 3 . 7 | . 2 .

4 2 1 9 5 8 6 3 7

8 7 3 6 2 1 9 5 4

5 9 6 4 7 3 2 1 8

3 1 2 8 4 6 7 9 5

7 6 8 5 1 9 3 4 2

9 4 5 7 3 2 8 6 1

2 8 9 1 6 4 5 7 3

1 3 7 2 9 5 4 8 6

6 5 4 3 8 7 1 2 9

Figure 7. Example input and output for the (3, 3) solver

8 Testing, Hardware Synthesis, and
Performance

One huge benefit of implementing most of our functionality
as pure functions is we can directly apply all the usual soft-
ware testing tools of Haskell like property-based unit test-
ing [5, 12]. For the stateful parts, Clash provides a simulator
that allows observing the given circuit’s behaviour cycle by
cycle, potentially driving its inputs monadically.

For example, we can write integration tests that feed a
given grid’s cells to the controller and then consume its
output until the 𝑁 2-th cell is shifted out. We can also use
the same mechanism for complete end-to-end testing of our
board that includes the serial receiver-transmitter.

In the introduction, we promised performance: after all,
why bother with a hardware solver if it ends up taking
longer to solve Sudoku problems? We can use the simulator
to measure our circuit’s performance: every step of the
simulation corresponds to one clock cycle. Excluding the
time of the serial communication, our testing shows most
(3, 3) Sudoku boards get solved in less than 100 cycles.
Some (3, 3) problems generally regarded as hard instances
[8] can take several thousand cycles. As an outlier, Norvig
presents an “impossibly hard” (3, 3) problem [11], which
for our solver takes a whopping 867,856 cycles to find out
is unsolvable.

For real hardware synthesis, a Xilinx XC7A50T chip was
used as a target, feeding the Clash output to the vendor’s
Vivado toolchain. For simplicity’s sake, the on-chip clock’s
default 100 MHz rate was used. For the (3, 3) solver, synthe-
sis with Vivado takes about 10 minutes and reports 9,298
logic cells used out of 32,600. At 100 MHz, the hardest real-
istic (3, 3) instances take less than 10 microseconds to solve,
and of course even the “impossible” problem falls in 8.7 mil-
liseconds. For the (3, 4) solver, Vivado ends up using 25,978
logic cells.

9 Can We Do Even More?
Our Sudoku solver makes good use of FPGA resources to
implement pruning of all 𝑁 2 cells in a single clock cycle.
There are two directions we can go from here.

The first is to try being even faster. As a small win, we
could get rid of the extra cycle in step when popping from
the stack with simple form of pipelining: ensuring that the
stack RAM is always connected to the right address. This
wouldwork because the only cycles inwhichwewant to use
a different address value is whenwe push; and if we discover
immediately after pushing that we need to pop, the address
we just pushed to is already exactly the right address to pop
from.

Since our backtracking strategy implements no heuristics
on choosing a guess candidate, we can end up unlucky. On
one example problem presented by Norvig [11], we find a
solution in 105 clock cycles when expand is defined using
mapAccumR. But if we change expand to choose the first am-
biguous cell instead of the last one (by replacing mapAccumR
with mapAccumL), solving time is improved to 93 cycles. In
contrast, on another example problem from the same source,
solving time shoots up from 74 cycles to 15,340 cycles! This
suggests a possible improvement of instantiating solver
multiple times, with different expand policies, and connect-
ing them to a single controller that runs each of themuntil
one of them finds a solution (i.e. a hardware version of the
amb combinator [10]). On the XC7A50T, we have enough
block RAM that the limitation comes from logic blocks; it
should be possible to replicate the (3, 3) solver three times.

The other direction is aiming for larger problem sizes. Un-
fortunately, our approach of immediate constraint propaga-
tion quickly becomes unfeasible, since we have each of the
𝑁 2 cells connected to 3(𝑁 2 − 1) neighbours with 𝑁 wires.
Direct pruning is the defining characteristic of our design,
but we could improve scaling by a factor of 𝑁 by applying
temporal multiplexing to pruning, i.e. by propagating one
bit-mask position at a time.

10 Closing Remarks on Clash
The codebase described in this paper is compiled with
Clash’s development version as of December 2024, Git
hash 3b755b90. The two benefits of using the development
version instead of Clash 1.8, the latest stable release, is
twofold: GHC 9.10 compatibility for new language features,
and the ability to track new bug fixes on the Clash side.

A recurring problem during development has been seem-
ingly equivalent changes in the Clash code suddenly caus-
ing large changes in the size of the synthesized circuit.

One flavor of this is changing sum type fields to separate
signals. For example, instead of two Sudoku n m fields in
Step’s Stuck constructor we can move the second one into
a separate return value of solve and connect it directly to
the stack’s write input. We have not applied this transfor-
mation in this paper since it makes the code less clear: its
effect is that we are always producing a grid to “write”, even
in clock cycles whenwe are not pushing (i.e. in cycles where
the MemCmd signal’s value is not Just Write). However, its
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Figure 8. Block diagram of the complete Sudoku solver circuit

positive effect on circuit size is massive: for the (3, 3) solver,
it decreases logic block count from 9,298 to 7,781, an im-
provement of more than 16%. For (3, 4) the effect is even
more pronounced, going from 25,978 to 20,057 (-22%).

To illustrate a different situation with supposedly equiva-
lent code yielding different circuit size, recall the definition
of guess in expand:

guess done cell ∣ not done ∧ not single = …
∣ otherwise = …

A reasonable alternative definition is changing the first
branch from a conjunction to two guards:

guess done cell ∣ not done, not single = …
∣ otherwise = …

But experimentally, this change leads to generated HDL
with the right-hand side duplicated, and since guess is
instantiated 81 times in the (3, 3) case, we end up with an
increase in total logic block usage by more than 12 percent.

In other cases, Clash downright fails to produce HDL.
Defining expand via mapAccumL instead of mapAccumR is
just as valid and works just as well in the Clash simulator
(and we have seen in section 9 that it can lead to interest-
ingly different outcomes for specific Sudoku problems), but
it causes the compiler to loop.

Nevertheless, as hopefully the presented program demon-
strates, the overall experience of using Clash is very pleas-
ant for the experienced functional programmer. We took an
idiomatic Haskell implementation of a Sudoku solver and
were able to keep most of its structure, including its usage
of high-level abstractions like isomorphisms and monoidal
folds, while adopting it into a high-performance FPGA de-
sign.
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