
Cooking a Haskell Curry with Applicative
Functors

Gergő Érdi
http://gergo.erdi.hu/

Singapore Institute of Technology, March 2019.
CS Department

FP Day

http://gergo.erdi.hu/

Cooking a Haskell Curry with Applicative
Functors

Gergő Érdi
http://gergo.erdi.hu/

Singapore Institute of Technology, March 2019.
Cooking School Department

Food Preparation Day

http://gergo.erdi.hu/

Recipes and ingredients

▶ Recipes don’t contain the ingredients, only their descriptions

(unless Home Chef, Blue Apron, etc.)

▶ But cooking a dish from a recipe needs the ingredients
▶ In this talk, everything else is modelled simply as pure

functions, e.g. chopped :: Dish→ Dish

1 / 10

Recipes and ingredients

▶ Recipes don’t contain the ingredients, only their descriptions
(unless Home Chef, Blue Apron, etc.)

▶ But cooking a dish from a recipe needs the ingredients
▶ In this talk, everything else is modelled simply as pure

functions, e.g. chopped :: Dish→ Dish

1 / 10

Running example: Haskell curry

1. Chop and fry onions
2. Chop some garlic
3. Mix curry paste and chilli
4. Stir all together

2 / 10

Pure functions: Infinite pantry

The pantry
get :: Pantry→ Ingredient→ Dish

curry :: Pantry→ Dish
curry pantry = mixOf [fried (chopped onion), chopped garlic,mixOf spices]

where
onion = get pantry "onion"
garlic = get pantry "garlic"
spices = map (get pantry) ["curry paste", "chilli"]

Problem: The rent is very high on infinitely large warehouses

3 / 10

Pure functions: Infinite pantry

The pantry
get :: Pantry→ Ingredient→ Dish

curry :: Pantry→ Dish
curry pantry = mixOf [fried (chopped onion), chopped garlic,mixOf spices]

where
onion = get pantry "onion"
garlic = get pantry "garlic"
spices = map (get pantry) ["curry paste", "chilli"]

Problem: The rent is very high on infinitely large warehouses

3 / 10

IO monad: “Here, take the chequebook”

Invoice Orders
type IO a
instance Monad IO
buy :: Shop→ Ingredient→ IO Dish

curry :: Shop→ IO Dish
curry shop = do

onion ← buy shop "onion"
garlic ← buy shop "garlic"
buy myCousinsShop "gold-plated truffle lobster"
spices← mapM (buy shop) ["curry paste", "chilli"]
return (mixOf [fried (chopped onion), chopped garlic,mixOf spices])

Problem: Who knows what the chef will do?!

4 / 10

IO monad: “Here, take the chequebook”

Invoice Orders
type IO a
instance Monad IO
buy :: Shop→ Ingredient→ IO Dish

curry :: Shop→ IO Dish
curry shop = do

onion ← buy shop "onion"
garlic ← buy shop "garlic"
buy myCousinsShop "gold-plated truffle lobster"
spices← mapM (buy shop) ["curry paste", "chilli"]
return (mixOf [fried (chopped onion), chopped garlic,mixOf spices])

Problem: Who knows what the chef will do?!

4 / 10

Custom monad: JIT shopping trips

A monad just for recipes
type RecipeM a
instance Monad RecipeM
buy :: Ingredient→ RecipeM Dish

curry :: RecipeM Dish
curry = do

onion ← buy "onion"
garlic ← buy "garlic"
spices← mapM buy ["curry paste", "chilli"]
return (mixOf [fried (chopped onion), chopped garlic,mixOf spices])

Problem: What if the mall is down in the valley, but the kitchen is
up on a very high mountain; you could even say the kitchen is in
the Clouds…

5 / 10

Custom monad: JIT shopping trips

A monad just for recipes
type RecipeM a
instance Monad RecipeM
buy :: Ingredient→ RecipeM Dish

curry :: RecipeM Dish
curry = do

onion ← buy "onion"
garlic ← buy "garlic"
spices← mapM buy ["curry paste", "chilli"]
return (mixOf [fried (chopped onion), chopped garlic,mixOf spices])

Problem: What if the mall is down in the valley, but the kitchen is
up on a very high mountain; you could even say the kitchen is in
the Clouds…

5 / 10

Bulk shopping (1st try)

type RecipeM a
instance Monad RecipeM
take :: Ingredient→ RecipeM Dish
ingredientsOf :: RecipeM a→ [Ingredient]
cook :: Monad m⇒ ([Ingredients]→ m Pantry)→ RecipeM a→ m a

Problem: This is impossible to implement: what about buying a
cookbook, and cooking a recipe from that? What are the
ingredients of the following recipe?

myRecipe = do
pasta← take "pasta"
cookbook← take "101 Pasta Sauce Recipes"
let sauceRecipe = cookbook !! 14
sauce← sauceRecipe
return (mixOf [cooked pasta, sauce])

6 / 10

Bulk shopping (1st try)

type RecipeM a
instance Monad RecipeM
take :: Ingredient→ RecipeM Dish
ingredientsOf :: RecipeM a→ [Ingredient]
cook :: Monad m⇒ ([Ingredients]→ m Pantry)→ RecipeM a→ m a

Problem: This is impossible to implement: what about buying a
cookbook, and cooking a recipe from that? What are the
ingredients of the following recipe?

myRecipe = do
pasta← take "pasta"
cookbook← take "101 Pasta Sauce Recipes"
let sauceRecipe = cookbook !! 14
sauce← sauceRecipe
return (mixOf [cooked pasta, sauce])

6 / 10

Bulk shopping (2nd try)

shop :: [Ingredient]→ IO Pantry
get :: Pantry→ Ingredient→ Dish

curry :: ([Ingredient],Pantry→ Dish)
curry = (ingredients, cook)

where
ingredients = ["onion", "potato", "curry paste", "chilli"]
cook pantry = mixOf [fried (chopped onion)

, chopped garlic
,mixOf spices]

where
onion = get pantry "onion"
garlic = get pantry "garlic"
spices = map (get pantry) ["curry paste", "chilli"]

Problem: There is no connection between the ingredient list and
the cooking instructions.

7 / 10

Bulk shopping (2nd try)

shop :: [Ingredient]→ IO Pantry
get :: Pantry→ Ingredient→ Dish

curry :: ([Ingredient],Pantry→ Dish)
curry = (ingredients, cook)

where
ingredients = ["onion", "potato", "curry paste", "chilli"]
cook pantry = mixOf [fried (chopped onion)

, chopped garlic
,mixOf spices]

where
onion = get pantry "onion"
garlic = get pantry "garlic"
spices = map (get pantry) ["curry paste", "chilli"]

Problem: There is no connection between the ingredient list and
the cooking instructions.

7 / 10

Bulk shopping

8 / 10

Static analysis with applicative functors

Applicative recipes
type Recipe a
instance Applicative Recipe
ingredientsOf :: Recipe a→ [Ingredient]
cook :: Applicative f⇒ ([Ingredient]→ f Pantry)→ Recipe a→ f a
take :: Ingredient→ Recipe Dish

curry :: Recipe Dish
curry = mixOf ⟨$⟩ sequenceA

[fried ◦ chopped ⟨$⟩ onion
, chopped ⟨$⟩ garlic
,mixOf ⟨$⟩ spices
]

where
onion = take "onion"
garlic = take "garlic"
spices = traverse take ["curry paste", "chilli"]

9 / 10

Static analysis with applicative functors

Applicative recipes
type Recipe a
instance Applicative Recipe
ingredientsOf :: Recipe a→ [Ingredient]
cook :: Applicative f⇒ ([Ingredient]→ f Pantry)→ Recipe a→ f a
take :: Ingredient→ Recipe Dish

{-# LANGUAGE ApplicativeDo #-}
curry :: Recipe Dish
curry = do

onion ← take "onion"
garlic ← take "garlic"
spices← traverse take ["curry paste", "chilli"]
pure (mixOf [fried (chopped onion), chopped garlic,mixOf spices])

9 / 10

Static analysis with applicative functors

Applicative recipes
type Recipe a
instance Applicative Recipe
ingredientsOf :: Recipe a→ [Ingredient]
cook :: Applicative f⇒ ([Ingredient]→ f Pantry)→ Recipe a→ f a
take :: Ingredient→ Recipe Dish

data Recipe a = MkRecipe
{ ingredientsOf :: [Ingredient]
, run :: Pantry→ a
}

take ingr = MkRecipe [ingr] (λpantry→ get pantry ingr)
cook shopFor recipe = do

pantry← shopFor (ingredientsOf recipe)
return (run recipe pantry)

9 / 10

Static analysis with applicative functors

Applicative recipes
type Recipe a
instance Applicative Recipe
ingredientsOf :: Recipe a→ [Ingredient]
cook :: Applicative f⇒ ([Ingredient]→ f Pantry)→ Recipe a→ f a
take :: Ingredient→ Recipe Dish

Even better: applicatives compose!

type Recipe = Product (Const [Ingredient]) (Reader Pantry)

9 / 10

So what?

▶ Think about desirable effects
▶ Think about composition
▶ Analyzing monadic computations is tricky (“the → in >>=”)
▶ Constraint on clients ⇔ freedom of implementation
▶ Applicative functor interface: structure is known without

running effects

10 / 10

