Gergé Erdi
http://gergo.erdi.hu/

Singapore Institute of Technology, March 2019.
CS Department
FP Day

http://gergo.erdi.hu/

Gergd Erdi
http://gergo.erdi.hu/

Singapore Institute of Technology, March 2019.
Cooking School Department
Food Preparation Day

http://gergo.erdi.hu/

Recipes and ingredients

P Recipes don't contain the ingredients, only their descriptions
» But cooking a dish from a recipe needs the ingredients

» In this talk, everything else is modelled simply as pure
functions, e.g. chopped :: Dish — Dish

1/10

Recipes and ingredients

P Recipes don't contain the ingredients, only their descriptions
(unless Home Chef, Blue Apron, etc.)

» But cooking a dish from a recipe needs the ingredients

» In this talk, everything else is modelled simply as pure
functions, e.g. chopped :: Dish — Dish

1/10

1. Chop and fry onions

2. Chop some garlic

3. Mix curry paste and chilli
4. Stir all together

2/10

get :: Pantry — Ingredient — Dish

curry :: Pantry — Dish
curry pantry = mixOf [fried (chopped onion), chopped garlic, mixOf spices]
where
onion = get pantry "onion"
garlic = get pantry "garlic"
spices = map (get pantry) ["curry paste","chilli"]

3/10

get :: Pantry — Ingredient — Dish

curry :: Pantry — Dish
curry pantry = mixOf [fried (chopped onion), chopped garlic, mixOf spices]
where
onion = get pantry "onion"
garlic = get pantry "garlic"
spices = map (get pantry) ["curry paste","chilli"]

Problem: The rent is very high on infinitely large warehouses

3/10

IO monad: “Here, take the chequebook”

Invoice Orders

type /0 a
instance Monad 10

buy :: Shop — Ingredient — 10 Dish

curry :: Shop — 10 Dish
curry shop = do
onion < buy shop "onion"
garlic < buy shop "garlic"
buy myCousinsShop "gold-plated truffle lobster"
spices «+— mapM (buy shop) ["curry paste","chilli"]
return (mixOf [fried (chopped onion), chopped garlic, mixOf spices])

4/10

IO monad: “Here, take the chequebook”

Invoice Orders

type /0 a
instance Monad 10

buy :: Shop — Ingredient — 10 Dish

curry :: Shop — 10 Dish
curry shop = do
onion < buy shop "onion"
garlic < buy shop "garlic"
buy myCousinsShop "gold-plated truffle lobster"
spices «+— mapM (buy shop) ["curry paste","chilli"]
return (mixOf [fried (chopped onion), chopped garlic, mixOf spices])

Problem: Who knows what the chef will do?!

4/10

type RecipeM a
instance Monad RecipeM

buy :: Ingredient — RecipeM Dish

curry :: RecipeM Dish
curry = do
onion <— buy "onion"
garlic +— buy "garlic"
spices <~ mapM buy ["curry paste","chilli"]
return (mixOf [fried (chopped onion), chopped garlic, mixOf spices])

5/10

Custom monad: JIT shopping trips

A monad just for recipes

type RecipeM a
instance Monad RecipeM

buy :: Ingredient — RecipeM Dish

curry :: RecipeM Dish
curry = do
onion <— buy "onion"
garlic < buy "garlic"
spices <~ mapM buy ["curry paste","chilli"]
return (mixOf [fried (chopped onion), chopped garlic, mixOf spices])

Problem: What if the mall is down in the valley, but the kitchen is
up on a very high mountain; you could even say the kitchen is in
the Clouds...

5/10

|
type RecipeM a
instance Monad RecipeM

take :: Ingredient — RecipeM Dish

ingredientsOf :: RecipeM a — [Ingredient]
cook :: Monad m = ([Ingredients] — m Pantry) — RecipeM a — m a

6/10

Bulk shopping (1% try)

type RecipeM a
instance Monad RecipeM

take :: Ingredient — RecipeM Dish

ingredientsOf :: RecipeM a — [Ingredient]
cook :: Monad m = ([Ingredients] — m Pantry) — RecipeM a — m a

Problem: This is impossible to implement: what about buying a
cookbook, and cooking a recipe from that? What are the
ingredients of the following recipe?

myRecipe = do
pasta < take "pasta"
cookbook < take "101 Pasta Sauce Recipes"
let sauceRecipe = cookbook !! 14
sauce < sauceRecipe
return (mixOf [cooked pasta, sauce])

6/10

Bulk shopping (2" try)

shop :: [Ingredient] — 10 Pantry
get :: Pantry — Ingredient — Dish

curry :: ([Ingredient], Pantry — Dish)
curry = (ingredients, cook)
where
ingredients = ["onion", "potato", "curry paste","chilli"]
cook pantry = mixOf [fried (chopped onion)
, chopped garlic
, mixOf spices|
where
onion = get pantry "onion"
garlic = get pantry "garlic"
spices = map (get pantry) ["curry paste","chilli"]

7/10

Bulk shopping (2" try)

shop :: [Ingredient] — 10 Pantry
get :: Pantry — Ingredient — Dish

curry :: ([Ingredient], Pantry — Dish)
curry = (ingredients, cook)
where
ingredients = ["onion", "potato", "curry paste","chilli"]
cook pantry = mixOf [fried (chopped onion)
, chopped garlic
, mixOf spices|
where
onion = get pantry "onion"
garlic = get pantry "garlic"
spices = map (get pantry) ["curry paste","chilli"]

Problem: There is no connection between the ingredient list and

the cooking instructions.
7/10

Bulk shopping

Chocolate Spread & Hazelnut
Drops

€ Preheat the oven to 190°C/375°F/Gas Mark 5. Line 2 baking Makes about 30
sheets with baking parchment. 225 g/8 0z butter. softened
140 g/5 oz caster sugar
1 egg yolk, lightly beaten
2 tsp vanilla extract
225 g/8 oz plain flour
55 g/2 0z cocoa powder
55 /2 0z ground hazelnuts
55 /2 0z plain chocolate chips

4 tbsp chocolate and hazelnut
spread
salt

@ Put the butter and sugar into a bow! and mix well with a
wooden spoon, then beat in the egg yolk and vanilla extract.
Sift together the flour, cocoa and a pinch of salt into the
mixture, add the ground hazelnuts and stir until thoroughly
combined.

@ Scoop out tablespoons of the mixture and shape into balls
with your hands, then put them on to the prepared baking
sheets spaced well apart. Use the dampened handle of a
wooden spoon to make a hollow in the centre of each cookie

© Bake for 12-15 minutes. Leave to cool on the baking sheets :
for 510 minutes, then using a palette knife, carefully transfer :
the cookies to wire racks to cool completely. When they are
cold, fill the hollows in the centre with chocolate and hazelnut

spread. : L

8/10

Static analysis with applicative functors

Applicative recipes
type Recipe a
instance Applicative Recipe
ingredientsOf :: Recipe a — [Ingredient]
cook :: Applicative f = ([Ingredient] — f Pantry) — Recipe a — fa
take :: Ingredient — Recipe Dish

curry :: Recipe Dish
curry = mixOf ($) sequenceA
[fried o chopped ($) onion

, chopped ($) garlic
, mixOf ($) spices
]

where

onion = take "onion"
garlic = take "garlic"
spices = traverse take ["curry paste","chilli"]

9/10

Static analysis with applicative functors

Applicative recipes

type Recipe a
instance Applicative Recipe

ingredientsOf :: Recipe a — [Ingredient|
cook :: Applicative f = ([Ingredient] — f Pantry) — Recipe a — fa

take :: Ingredient — Recipe Dish

{-# LANGUAGE ApplicativeDo #-}
curry :: Recipe Dish
curry = do
onion < take "onion"
garlic < take "garlic"
spices «— traverse take ["curry paste","chilli"]
pure (mixOf [fried (chopped onion), chopped garlic, mixOf spices])

9/10

Static analysis with applicative functors

Applicative recipes
type Recipe a
instance Applicative Recipe
ingredientsOf :: Recipe a — [Ingredient]
cook :: Applicative f = ([Ingredient] — f Pantry) — Recipe a — fa
take :: Ingredient — Recipe Dish

data Recipe a = MkRecipe

{ingredientsOf :: [Ingredient]

, run :: Pantry — a

}
take ingr = MkRecipe [ingr] (Apantry — get pantry ingr)
cook shopFor recipe = do

pantry < shopFor (ingredientsOf recipe)
return (run recipe pantry)

9/10

Static analysis with applicative functors

Applicative recipes

type Recipe a
instance Applicative Recipe

ingredientsOf :: Recipe a — [Ingredient]
cook :: Applicative f = ([Ingredient] — f Pantry) — Recipe a — fa
take :: Ingredient — Recipe Dish

Even better: applicatives compose!

type Recipe = Product (Const [Ingredient]) (Reader Pantry)

9/10

So what?

vVvyYyyvyy

Think about desirable effects

Think about composition

Analyzing monadic computations is tricky (“the — in >=")
Constraint on clients < freedom of implementation

Applicative functor interface: structure is known without
running effects

10/10

